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In this report, an algorithm that automatically constructs an uncertainty band around any eval-
uation curve is described. Given an evaluation curve and a corresponding set of experimental data
points with x and y error bars, the algorithm expands a symmetric region around the evaluation
curve until 68.3% of a set of points, randomly sampled from the experimental data, fall within the
region. For a given evaluation curve, the region expanded in this way represents, by definition, a
one-standard-deviation interval about the evaluation that accounts for the experimental data. The
algorithm is tested against several benchmarks, and is shown to be well-behaved, even when there
are large gaps in the available experimental data. The performance of the algorithm is assessed
quantitatively using the tools of statistical-inference theory.

I. INTRODUCTION

In this report, we examine the problem of assigning
meaningful uncertainties to a data evaluation. If the eval-
uation can be expressed as a function of a set of param-
eters, there exist well-established procedures for deter-
mining the variability of the evaluation with respect to
the parameters. For example, if the evaluation depends
linearly on the parameters, the full machinery of linear-
regression analysis can be readily applied. In practical
applications, however, it is not always possible to evalu-
ate a set of data with a well-defined parametric function.
The evaluation may depend on quantities that cannot be
easily varied in a continuous manner. For example, the
quantum numbers of the states in a discrete level scheme
may not be known. Furthermore, it may be necessary to
probe the sensitivity of the evaluation model with respect
to missing or extraneous levels, without a clear prescrip-
tion for adding or removing those levels. The evaluation
may also be uncertain because it relies on a simplistic
picture of the underlying physics. In this case, it is im-
possible to vary an abstract concept, such as the “degree
of realism” of the model, and observe the resulting effect
on the evaluation. For those cases where variations of
the evaluation are not possible, or not practical, a differ-
ent approach is needed to quantify the uncertainty in the
evaluated results.

As a concrete example, consider the ">As(n,2n) reac-
tion cross-section evaluation [1], show in Fig. 1. The in-
dividual data points are taken from several (and in prin-
ciple independent) measurements spanning four decades.
The solid line was obtained from a Hauser-Feshbach cal-
culation using the code STAPRE. For the reasons cited
above, it was not practical to attempt to run STAPRE
repeatedly, while varying some aspects of the physics it
implements, in order to obtain a spread of curves repre-
senting the uncertainty in the model calculation. A more
useful approach is to take the solid curve as a given, and
find the uncertainty band around it, that is most rep-
resentative of the data points. Recalling the definition
of an error bar, a simple prescription for finding the un-
certainty band presents itself. In the case of a Gaus-
sian probability distribution, which we will assume is
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Figure 1: Evaluation of the “®As(n,2n) cross section, taken
from [1].

an appropriate distribution in this case, a one-standard-
deviation (o) interval around a mean value T (in this
case, the evaluation) will contain a fraction of the data
equal to

~ 0.682689

Thus, an uncertainty band for the evaluation in Fig. 1
can be found by “expanding” a region around the solid
curve until 68.3% of the data represented by the points
in the figure have been included. The main point which
will be addressed in the remainder of this report, is how
to define and expand an appropriate region around the
evaluation curve.
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Figure 2: Sampled points generated by a Monte-Carlo proce-
dure from the data in Fig. 1.

II. METHOD

For the STAPRE calculation and data points in Fig.
1, and uncertainty band was generated by assuming a
constant relative uncertainty for all neutron energies [1].
Thus, if the cross-section curve in the figure is given by
the function j (E, ), where E,, is the neutron energy, the
upper (y+) and lower (y_) curves delimiting the uncer-
tainty band are given by

= y(En) (1+k)
y(En) (1—k)

where k is a constant. In practice, the value of k was
determined in two steps. First, each data point and its
associated x and y error bars in Fig. 1 was interpreted as
the mean and standard deviation of a Gaussian distribu-
tion, and a “cloud” of 1000 points, sampled from this dis-
tribution using a Monte-Carlo procedure was generated
for each original data point, as shown in Fig. 2. Then,
the value of k was increased gradually from 0 until 68.3%
of the Monte-Carlo points were included between y_ (E,,)
and yy (Ey). A value of k = 10.4% was obtained in this
way, and the corresponding confidence band is plotted in
Fig. 3.

The procedure described above yields, in a relatively
straightforward way, a meaningful uncertainty band for
the evaluation in Fig. 1. The main limitation of the tech-
nique is that it is not very sensitive to the local behavior
of the experimental data points. For example, near the
reaction threshold (E, ~10-12 MeV), the first two data
points are in poor agreement with the calculated cross-
section curve. However, this discrepancy is not reflected
in the width of the uncertainty band, as can be seen in
Fig. 3. We will now generalize the “global” uncertainty-
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Figure 3: Uncertainty band deduced in [1]. The solid line
gives the evaluation, the dashed lines represent the uncer-
tainty band obtained by assuming a global relative uncer-
tainty.

band procedure described above to take into account lo-
cal variations in the distribution of experimental data
points.

We begin by assuming that, given an evaluation curve
g (), the corresponding standard deviation o (z) is a
slowly-varying function of the independent variable z.
The upper and lower limits of the confidence band are
given by
y(z)+o(x)

y(z) —o(x)

Yt (z) =
y-(z) =

In order to determine the local value, o (), of the stan-
dard deviation at a given value of x, we generate a
cloud of Monte-Carlo points from the experimental data
[3], and gradually expand an interval [z — Az, x + Ax]
centered on x until a statistically-significant number
of Monte-Carlo points is contained within the inter-
val. The actual minimum number of points that con-
stitute a statistically significant sample is supplied by
the user as an input to the algorithm. Once the interval
[x — Az, + Az] has been constructed, we assume that
the interval is small enough that variations in o (z) over
the width of the interval can be neglected, and we use a
local constant value o (x) = 0. Now, we can proceed as
we did before, slowly increasing the value of o from zero
until 68.3% of the Monte-Carlo points in the local interval
[z — Az, x + Ax] are included between y_ (z) = g (x)—0o
and y4 () = g (x) + 0. This procedure is repeated sys-
tematically over the set of discrete points defining the
evaluated curve g (z), first expanding a local x interval
to encompass a statistically-significant Monte-Carlo sam-
ple and then expanding the one-sigma y band, and the
corresponding uncertainty band for the entire curve is



generated [4].

III. BENCHMARKS

In order to test the local-uncertainty-band algorithm
described in section II, we construct an evaluation curve
7 (x) and a corresponding standard deviation o (z) using

7(z) = 100e~2/100 (1)
2
o(z) = 6+5Sin%§ 2)

Note that we could have generated the curves g (z) and
o (z) in a more consistent manner, starting from a func-
tion y (z) = Ae*/% where A has an expected value A
and an uncertainty o4, and a has an expected value a
and uncertainty o,. The curve g (x) is then obtained by
setting A = A and a = a inside y (z), and o (x) corre-
sponds to (independent) variations of the Gaussian ran-
dom variables A and a in the function y (z). Instead, we
have imposed the functional form in Eq. (2) for o (z),
because the oscillations in this function should provide a
more demanding test for the algorithm. There is, how-
ever, a subtle point to make regarding this choice of the
form of o (x) which sheds light on the meaning of the
uncertainty band generated by the algorithm discussed
here, and we will return to this point in section IV. The
evaluation in Eq. (1) and its uncertainty band, deduced
using Eq. (2), are plotted in Fig. 4. From these curves,
Monte-Carlo points are generated as follows: a value of
the abscissa x is sampled from a uniform distribution in
the interval [0,300], for that value of x a value of the
ordinate y is sampled from a Gaussian distribution with
mean j (z) and standard deviation o (z). A total of 105
Monte-Carlo points was generated in this manner, and
the points are plotted in Fig. 5. The test then is to see
whether the uncertainty-band algorithm can reconstruct
the dashed lines in Fig. 4, starting from the Monte-Carlo
points in Fig. 5. For this test, the number of statistically
significant points in a local interval was set at 200. The
y— (z) and y4 (x) curves reconstructed by the algorithm
are compared in Fig. 6 to the original curves from Fig.
4. In this case, the uncertainty band was reconstructed
with astounding accuracy. Small fluctuations of the re-
constructed curves about the original lines can be at-
tributed to the Monte-Carlo procedure used to generate
the points in Fig. 5.

Next, we test the ability of the algorithm to recon-
struct the original uncertainty band when large portions
of the data are missing. In Fig. 7, we have reduced
the Monte-Carlo points from Fig. 5 by omitting those
points whose abscissa falls within the intervals [25, 75],
[125,175], or [225,275]. The uncertainty-band algorithm
was run, again requiring at least 200 points in each lo-
cal interval, and the result is compared in Fig. 8 with

the original uncertainty band. Despite the gaps in the
Monte-Carlo data, the uncertainty band is very-well re-
produced by the algorithm.

Finally, we return to the cross-section evaluation in
Fig. 1, and apply the local-uncertainty-band algorithm,
with the usual 200-point requirement for the local inter-
vals. The resulting uncertainty band is plotted in Fig. 9,
and should be compared with the band in Fig. 3. The un-
certainty band in Fig. 9 is a much better estimate of the
extent to which the evaluation represents the available
data. In particular, we see that in the range F,, ~10-12
MeV, the band becomes larger where the evaluation and
data are in poor agreement, as expected. However, for a
more formal assessment of the algorithm’s performance in
this case, the interested reader should consult appendix
A. One valid criticism that can be leveled against the un-
certainty band in Fig. 9 is that it remains relatively broad
at the reaction threshold (E, = 10.382 MeV), where we
know that the cross section must go to zero. There are
several ways to mitigate this problem. First, a new eval-
uation that passes closer to the data points with F, =
10.98 and 11.87 MeV would lead to an uncertainty band
that is much narrower near and at threshold. Second, and
artificial data point with zero x and y error bars could
be added at threshold, forcing the uncertainty band to
shrink to zero width at that point. Third, near threshold,
the assumption of a slowly varying o () may no longer
be valid. In that case, it may be more appropriate to
assume a constant relative uncertainty near threshold, in
such a way that the deduced o (x) transitions smoothly
from the constant relative uncertainty to the constant
absolute uncertainty model as a function of x.

In addition to producing uncertainty bands, the algo-
rithm described in section II can also be used to con-
struct confidence intervals, which can be thought of in
this context as a generalization of the concept of an error
bar. For example, in Fig. 10, the 95% confidence inter-
val is plotted, and represents a band containing 95% of
the Monte-Carlo points. In this particular case, the 95%
confidence band looks more or less like a wider version
of the (68.3%) uncertainty band, except near F, = 14
MeV, where a large spread in the data causes the band
to jut out noticeably.

IV. DISCUSSION AND CONCLUSION

We noted in section III that the uncertainty band for
the fictitious evaluated curve in Fig. 4 could have been
obtained by varying the parameters in a given model.
This approach can always be used to construct the un-
certainty band, given a parametric model, and data
from which the variability of the parameters can be de-
duced. In fact, if we assumed the exponential model
y(z) = Ae~*/® with Gaussian distributions for the pa-
rameters A and a, we could never reproduce the “data”
points in Fig. 5. We would then be led to conclude that
the model, the data, or both are not correct. Conversely,



100

50

= ~

~o _=
I P P P ol T

0 50 100 150 200 250 300
X

Figure 4: Functional forms used to test the confidence-band
algorithm. The solid line represents g (z), given by Eq. (1),
and the dashed lines represent the curves y_ (z) and y4 (z)
given by Eq. (2).
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Figure 5: Data points generated by a Monte-Carlo procedure
using the functional forms plotted in Fig. 4. The curves from
Fig. 4 are overlayed on top of the data for reference.

the algorithm described in this report cannot be used to
validate either the evaluation curve or the data. Instead,
the algorithm constructs an uncertainty band, based on
a very different premise: the method assumes that the
model is not known but that the standard deviation is
a slowly-varying function of the independent variable x,
and attempts to generate uncertainties that are consis-
tent with the available data.

We have developed and implemented an algorithm that
constructs a meaningful uncertainty band, given an eval-
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Figure 6: Reconstruction of the uncertainty band from the
data in Fig. 5, using the confidence-band algorithm. The
dashed lines represent the original uncertainty band, and the
discrete points represent their reconstruction.
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Figure 7: New data set, generated from the data in Fig. 5,
by removing significant ranges of points. This new data set
is used to test the behavior of the confidence-band algorithm
when faced with missing data.

uation curve and a set of experimental data points with
x- and y-error bars. The algorithm is sensitive to local
variations in the distribution of the experimental data
around the evaluation curve. The algorithm has been
tested with several benchmarks. First, it has been shown
that the algorithm can correctly reconstruct the uncer-
tainty band from a parent distribution, given a Monte-
Carlo sample from that distribution. Next, the algorithm
was shown to closely reproduce the uncertainty band,
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Figure 8: Uncertainty band reconstructed from the reduced
data in Fig. 7. The dashed lines represent the original un-
certainty band, and the discrete points represent their recon-
struction.
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Figure 9: Uncertainty band (dashed lines) reconstructed from
the data in Fig. 2. The evaluation curve (solid line) and orig-
inal data (solid points) from Fig. 3 are shown for reference.

even when sizable portions of the Monte-Carlo sample
are discarded. Finally, the method was applied in a real-
istic situation by providing an uncertainty band for the
7 As(n,2n) cross-section, evaluated in [1]. The algorithm
described here should be used when the evaluation cannot
be represented by a parametric model whose parameters
can be meaningfully or practically varied to reproduce
the spread in experimental data.
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Figure 10: Plot of the 95% confidence interval (dotted lines)
around the evaluation curve, shown along with the uncer-
tainty band (dashed lines) from Fig. 9.

Appendix A: STATISTICAL INFERENCE ON
THE PERFORMANCE OF THE ALGORITHM

In this appendix, we formulate a hypothesis test for
the performance of the band-construction algorithm (see,
e.g., [2] for a detailed description of the methodology).
We take as a criterion for success the extent to which the
fraction of all Monte-Carlo points included within the
band approaches the theoretical limit of pg =~ 0.682689.
In general, the algorithm can fail if the number of Monte-
Carlo points is too small, if the minimum number of
points in a local interval specified by the user is too small,
or if the discrete points about which the local intervals
are expanded are too far apart (leading to the “kinks” in
the band in Fig. 9).

To perform the test, the upper- and lower-bound
curves y_ (x) and y4 (x) produced by the algorithm are
splined, and the overall proportion p of the N Monte-
Carlo points that fall between the two curves is extracted.
For the results plotted in Fig. 9, we find N = 37000 and
p = 0.6429. With this information, we can test the null
hypothesis that p = pg, against the alternative p # pg at,
for example, the @ = 0.01 level of significance (i.e., the
probability of incorrectly rejecting the null hypothesis if
it is true is & = 0.01). We form the random variable

L, _ _Np—Npo (A1)
Npo (1= po)

which, by the central-limit theorem has a Gaussian prob-
ability distribution with mean 0 and standard deviation
1. At the chosen level of significance, the null hypothesis
must be rejected if the value of z in Eq. (A1) is lower than
-2.575 or greater than +2.575 (which defines the so-called
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Figure 11: Improved estimate of the uncertainty band (see
text). This result should be compared with the one displayed
in Fig. 9.

critical region for a Gaussian distribution with o = 0.01).
Using the values N = 37000 and p = 0.6429 in Eq. (A1),

we find z = —16.4441, which clearly falls within the crit-
ical region. Therefore, we must reject the null hypothesis
that p = pg at the 0.01 level of significance, and conclude
that the uncertainty in Fig. 9 should be re-calculated
with a larger Monte-Carlo sample and a finer step size
for the evaluation curve.

In light of this conclusion, we increase the number of
Monte-Carlo points generated for each experimental data
point from 1000 to 2000, and we spline the evaluation
curve and refine the step size along the x axis to 0.1
MeV. The new uncertainty band is shown in Fig. 11,
and is qualitatively similar to the one shown in Fig. 9.
However, for this new band, we extract an overall propor-
tion p = 0.682309 of the N = 74000 Monte-Carlo points
within the uncertainty band. Using Eq. (A1), a value of
z = —0.222098 is found in this case, which is well out-
side the critical region, and we therefore accept the null
hypothesis. In other words, we can say that, at the 0.01
level of significance, the uncertainty band in Fig. 11 in-
cludes the known experimental data 68.3% of the time,
as it should.
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